<\/span><\/h2>[风机水泵专用智能节电设备<\/span>]<\/span><\/span><\/h2>产品详情<\/span><\/p>风机水泵专用智能节电设备<\/span><\/p>在风机、水泵类负载运行中,其输入的能量约15<\/span>~<\/span>20%<\/span>被电机和风机、水泵本身所消耗,约<\/span>35<\/span>~<\/span>50%<\/span>被挡板或风门节流所消耗。前者可通过采用高效电机及高效风机、水泵来降低,后者则可通过采用节能调速调节流量来取消。因为对水泵来说,其轴功率与转速的三次方成正比,流量与转速的一次方成正比。所以,如果通过调速将流量降到满载时的<\/span>80%<\/span>,则所需轴功率可减少一半(理论上)。实践及理论均已证明,采用节能调速调节流量节电可达<\/span>20%<\/span>~<\/span>60%<\/span>。<\/span><\/span>
<\/span>
<\/span> 一台设备在选用与其配套的电机容量时,均是按设备的最大用量予以考虑,且留有<\/span>20%<\/span>流量的裕量。这就是说,即使设备全载运行,其开度也不会是<\/span>100%<\/span>,最多仅能达到<\/span>80%<\/span>左右,此外,水泵在选用其配套电动机时,也留有一定裕量。因而在设备的正常运行中,其电动机总是处于不全载情况下运行。上面两种情况,使得采用节能调速调节流量要节约更多的电能。<\/span><\/span>
<\/span>
<\/span> 用挡板调节流量,可调性能差,非线度大,反应速度慢,不准确。而且在挡板开度很小时,电机的输入功率仍然很大。采用节能调速调节流量(此时挡板处于全开位置),不仅可调性能好,反应速度快,而且线性度和准确性均很高。如采用闭环控制,则水位控制精度可达<\/span>±10<\/span>毫米,<\/span><\/span>汽<\/span>压控制精度可达±5%<\/span>,负压控制精度可达<\/span>±3Pa<\/span>。<\/span><\/span>
<\/span>
<\/span> 与计算机接口,接受计算机的指令来改变智能省电装置的输出频率。这种控制方式可使设备始终在最佳状态下运行。这不仅可将提高设备效率<\/span>15%<\/span>,同时也具有约<\/span>25%<\/span>的节能作用。并能减轻劳动强度,降低噪音、粉尘,从而减少了对环境的污染。<\/span><\/span><\/p>基本原理<\/span><\/p>风机、水泵类是一种平方转矩负载,其转速n<\/span>与流量<\/span>Q<\/span>、压力<\/span>H<\/span>及轴功率<\/span>N<\/span>的关系如下式所示:<\/span><\/span>
<\/span>
<\/span> Q1=Q2(<\/span>n1/n2<\/span>);<\/span>H1=H2<\/span>(<\/span>n1/n2<\/span>)<\/span>2<\/span>;<\/span>N1=N2<\/span>(<\/span>n1/n2<\/span>)<\/span>3<\/span>亦为:<\/span>Q<\/span><\/span>∝<\/span>n;<\/span>H<\/span><\/span>∝<\/span>n2;<\/span>N<\/span><\/span>∝<\/span>n3<\/span>
<\/span>
<\/span> 上式表明,风机、水泵的用量<\/span>Q<\/span>与其转速<\/span>n<\/span>成正比,水泵的扬程<\/span>H<\/span>与其转速<\/span>n<\/span>的平方成正比,风机、水泵的轴功率<\/span>N<\/span>与其转速<\/span>n<\/span>的立方成正比。频率与转速的关系为<\/span>n=60f(1-s)/p<\/span><\/span>
<\/span>
<\/span> 式中:<\/span>f<\/span>为电源频率,<\/span>s<\/span>为转差率,额定转差率约为<\/span>2<\/span>~<\/span>5%<\/span>,<\/span>p<\/span>为电动机的极对数。<\/span><\/span>
<\/span>
<\/span> 由上式可看出,当<\/span>p<\/span>、<\/span>s<\/span>一定时,电机即水泵转速与输入电流的频率成正比。频率愈高,转速愈快,频率愈低,转速愈慢。由水泵特性可知,水泵用量与频率也成正比,调节频率即调节转速。<\/span><\/span>
<\/span>
<\/span> 由此可见,如果降低电源频率即可降低电机转速,减少水泵用量,从而按立方指数关系大幅度降低水泵用量电机功率消耗,实现有效节能。见表<\/span>1<\/span>与图<\/span>1<\/span>。<\/span><\/span><\/p>表1 <\/span>节能调速的节电比率如下表<\/span><\/span><\/p> <\/span><\/p>图1<\/span>转速<\/span>n<\/span>、压力<\/span>P<\/span>、功率<\/span>N<\/span>、节电率<\/span>K<\/span>与流量<\/span>Q<\/span>关系曲线<\/span><\/span><\/p> <\/span><\/p>应用效果<\/span><\/p>- 1. <\/span>风、水压的保障<\/span><\/li><\/ol>
节能在实际使用中要考虑流量与水泵的转速的平方成正比的关系及管损与水泵的转速平方成正比的关系;在水泵的压力随转速的降低而降低的同时管道损失也在降低,因此,系统对水泵压力的实际需求一样要降低;而通过设定智能省电装置下限频率的方法又可保证系统对水泵压力的最低需求。<\/span>
<\/span> 2.<\/span><\/span> <\/span>控制性能的提高<\/span><\/p>系统运行稳定,抗干扰能力强,软启动,高效节能,保护功能完善,可逻辑控制,操作简单安装方便,可实现工频、节能双回路控制,可自动切换,安全运行有保证,低噪音,环保效果显著等。<\/span>
<\/span> <\/span>3.<\/span><\/span> <\/span>避免了可调节挡板的维护费用的发生。<\/span>
<\/span> <\/span>4.<\/span><\/span> <\/span>节电效果显著,<\/span>根据现场实际数据和运行工况分析,节能控制改造项目风机、水泵类节能改造后,节电率可达到25%--45%<\/span>之间。<\/span><\/span><\/p>经济效益分析<\/span><\/p>根据分析和计算,对风机、水泵类系统进行节能改造,采用我公司<\/span>’<\/span>LK-DL-K-P/SB<\/span>’<\/span>风机、水泵专用智能节电设备与原有控制的电机比较,能源节约是最有实际意义的,我公司<\/span>’<\/span>LK-DL-K-P/SB<\/span>’风机<\/span><\/span>、水泵专用智能节电设备是根据用量需求来控制电机的运行,这样就可节省大量25%-45%<\/span>左右的电能,而且还能进一步降低设备的运行成本降低,传统电机的运行成本由三项组成:初始采购成本、维护成本和能源成本。其中能源成本大约占电机运行成本的<\/span>77%<\/span>。通过降低能源成本,再加上对设备的冲击减少,维护和维修量也跟随降低,所以运行成本将大大降低。不仅如此,安装我公<\/span><\/span>司’<\/span><\/span>LK-DL-K-P/SB<\/span>’智<\/span><\/span>能风机、水泵专用智能节电设备还能进一步提高控制精度,使系统具有精确的控制能力。<\/span>
<\/span>
<\/span> 使电机的输出与系统所需的用量相匹配。电机的输出用量随着电机转速的改变而改变。由于控制电机速度的精度提高,所以它可以使系统变化保持在<\/span>±0.2bar<\/span>范围内,有效地提高了工控的质量。另外,安装我公<\/span><\/span>司’<\/span><\/span>LK-DL-K-P/SB<\/span>’风<\/span><\/span>机、水泵专用智能节电设备还能延长电机的使用寿命,从0Hz<\/span>起动电机,它的起动加速时间可以调整,<\/span><\/span>’<\/span>LK-DL-K-P/SB<\/span>’风<\/span><\/span>机、水泵专用智能节电设备的保护功能比较齐全,电机为软启动,启动电流比较小,对电机能起到较好的保护作用,<\/span>从而减少起动时对压缩机的电器部件和机械部件所造成的冲击,增强系统的可靠性,减少了电机加卸载的次数,使电机的使用寿命延长。<\/span><\/span>
<\/span>
<\/span> 此外,能够减少机组起动时电流波动,这一波动电流会影响电网和其它设备的用电,能够有效的将起动电流的峰值减少到最低程度。还有安装我公司<\/span><\/span>’<\/span>LK-DL-K-P/SB<\/span>’<\/span>风机、水泵专用智能节电设备能进一步降低电机的噪音,根据电机的工控要求,改造后,电机运转速度明显减慢,因此有效地降了电机运行时的噪音。现场测定表明,噪音与原系统比较下降约3<\/span>
产品详情<\/span><\/p> 风机水泵专用智能节电设备<\/span><\/p> 在风机、水泵类负载运行中,其输入的能量约15<\/span>~<\/span>20%<\/span>被电机和风机、水泵本身所消耗,约<\/span>35<\/span>~<\/span>50%<\/span>被挡板或风门节流所消耗。前者可通过采用高效电机及高效风机、水泵来降低,后者则可通过采用节能调速调节流量来取消。因为对水泵来说,其轴功率与转速的三次方成正比,流量与转速的一次方成正比。所以,如果通过调速将流量降到满载时的<\/span>80%<\/span>,则所需轴功率可减少一半(理论上)。实践及理论均已证明,采用节能调速调节流量节电可达<\/span>20%<\/span>~<\/span>60%<\/span>。<\/span><\/span> 基本原理<\/span><\/p> 风机、水泵类是一种平方转矩负载,其转速n<\/span>与流量<\/span>Q<\/span>、压力<\/span>H<\/span>及轴功率<\/span>N<\/span>的关系如下式所示:<\/span><\/span> 表1 <\/span>节能调速的节电比率如下表<\/span><\/span><\/p> <\/span><\/p> 图1<\/span>转速<\/span>n<\/span>、压力<\/span>P<\/span>、功率<\/span>N<\/span>、节电率<\/span>K<\/span>与流量<\/span>Q<\/span>关系曲线<\/span><\/span><\/p> <\/span><\/p> 应用效果<\/span><\/p> 节能在实际使用中要考虑流量与水泵的转速的平方成正比的关系及管损与水泵的转速平方成正比的关系;在水泵的压力随转速的降低而降低的同时管道损失也在降低,因此,系统对水泵压力的实际需求一样要降低;而通过设定智能省电装置下限频率的方法又可保证系统对水泵压力的最低需求。<\/span> 系统运行稳定,抗干扰能力强,软启动,高效节能,保护功能完善,可逻辑控制,操作简单安装方便,可实现工频、节能双回路控制,可自动切换,安全运行有保证,低噪音,环保效果显著等。<\/span> 经济效益分析<\/span><\/p> 根据分析和计算,对风机、水泵类系统进行节能改造,采用我公司<\/span>’<\/span>LK-DL-K-P/SB<\/span>’<\/span>风机、水泵专用智能节电设备与原有控制的电机比较,能源节约是最有实际意义的,我公司<\/span>’<\/span>LK-DL-K-P/SB<\/span>’风机<\/span><\/span>、水泵专用智能节电设备是根据用量需求来控制电机的运行,这样就可节省大量25%-45%<\/span>左右的电能,而且还能进一步降低设备的运行成本降低,传统电机的运行成本由三项组成:初始采购成本、维护成本和能源成本。其中能源成本大约占电机运行成本的<\/span>77%<\/span>。通过降低能源成本,再加上对设备的冲击减少,维护和维修量也跟随降低,所以运行成本将大大降低。不仅如此,安装我公<\/span><\/span>司’<\/span><\/span>LK-DL-K-P/SB<\/span>’智<\/span><\/span>能风机、水泵专用智能节电设备还能进一步提高控制精度,使系统具有精确的控制能力。<\/span>
<\/span>
<\/span> 一台设备在选用与其配套的电机容量时,均是按设备的最大用量予以考虑,且留有<\/span>20%<\/span>流量的裕量。这就是说,即使设备全载运行,其开度也不会是<\/span>100%<\/span>,最多仅能达到<\/span>80%<\/span>左右,此外,水泵在选用其配套电动机时,也留有一定裕量。因而在设备的正常运行中,其电动机总是处于不全载情况下运行。上面两种情况,使得采用节能调速调节流量要节约更多的电能。<\/span><\/span>
<\/span>
<\/span> 用挡板调节流量,可调性能差,非线度大,反应速度慢,不准确。而且在挡板开度很小时,电机的输入功率仍然很大。采用节能调速调节流量(此时挡板处于全开位置),不仅可调性能好,反应速度快,而且线性度和准确性均很高。如采用闭环控制,则水位控制精度可达<\/span>±10<\/span>毫米,<\/span><\/span>汽<\/span>压控制精度可达±5%<\/span>,负压控制精度可达<\/span>±3Pa<\/span>。<\/span><\/span>
<\/span>
<\/span> 与计算机接口,接受计算机的指令来改变智能省电装置的输出频率。这种控制方式可使设备始终在最佳状态下运行。这不仅可将提高设备效率<\/span>15%<\/span>,同时也具有约<\/span>25%<\/span>的节能作用。并能减轻劳动强度,降低噪音、粉尘,从而减少了对环境的污染。<\/span><\/span><\/p>
<\/span>
<\/span> Q1=Q2(<\/span>n1/n2<\/span>);<\/span>H1=H2<\/span>(<\/span>n1/n2<\/span>)<\/span>2<\/span>;<\/span>N1=N2<\/span>(<\/span>n1/n2<\/span>)<\/span>3<\/span>亦为:<\/span>Q<\/span><\/span>∝<\/span>n;<\/span>H<\/span><\/span>∝<\/span>n2;<\/span>N<\/span><\/span>∝<\/span>n3<\/span>
<\/span>
<\/span> 上式表明,风机、水泵的用量<\/span>Q<\/span>与其转速<\/span>n<\/span>成正比,水泵的扬程<\/span>H<\/span>与其转速<\/span>n<\/span>的平方成正比,风机、水泵的轴功率<\/span>N<\/span>与其转速<\/span>n<\/span>的立方成正比。频率与转速的关系为<\/span>n=60f(1-s)/p<\/span><\/span>
<\/span>
<\/span> 式中:<\/span>f<\/span>为电源频率,<\/span>s<\/span>为转差率,额定转差率约为<\/span>2<\/span>~<\/span>5%<\/span>,<\/span>p<\/span>为电动机的极对数。<\/span><\/span>
<\/span>
<\/span> 由上式可看出,当<\/span>p<\/span>、<\/span>s<\/span>一定时,电机即水泵转速与输入电流的频率成正比。频率愈高,转速愈快,频率愈低,转速愈慢。由水泵特性可知,水泵用量与频率也成正比,调节频率即调节转速。<\/span><\/span>
<\/span>
<\/span> 由此可见,如果降低电源频率即可降低电机转速,减少水泵用量,从而按立方指数关系大幅度降低水泵用量电机功率消耗,实现有效节能。见表<\/span>1<\/span>与图<\/span>1<\/span>。<\/span><\/span><\/p>
<\/span> 2.<\/span><\/span> <\/span>控制性能的提高<\/span><\/p>
<\/span> <\/span>3.<\/span><\/span> <\/span>避免了可调节挡板的维护费用的发生。<\/span>
<\/span> <\/span>4.<\/span><\/span> <\/span>节电效果显著,<\/span>根据现场实际数据和运行工况分析,节能控制改造项目风机、水泵类节能改造后,节电率可达到25%--45%<\/span>之间。<\/span><\/span><\/p>
<\/span>
<\/span> 使电机的输出与系统所需的用量相匹配。电机的输出用量随着电机转速的改变而改变。由于控制电机速度的精度提高,所以它可以使系统变化保持在<\/span>±0.2bar<\/span>范围内,有效地提高了工控的质量。另外,安装我公<\/span><\/span>司’<\/span><\/span>LK-DL-K-P/SB<\/span>’风<\/span><\/span>机、水泵专用智能节电设备还能延长电机的使用寿命,从0Hz<\/span>起动电机,它的起动加速时间可以调整,<\/span><\/span>’<\/span>LK-DL-K-P/SB<\/span>’风<\/span><\/span>机、水泵专用智能节电设备的保护功能比较齐全,电机为软启动,启动电流比较小,对电机能起到较好的保护作用,<\/span>从而减少起动时对压缩机的电器部件和机械部件所造成的冲击,增强系统的可靠性,减少了电机加卸载的次数,使电机的使用寿命延长。<\/span><\/span>
<\/span>
<\/span> 此外,能够减少机组起动时电流波动,这一波动电流会影响电网和其它设备的用电,能够有效的将起动电流的峰值减少到最低程度。还有安装我公司<\/span><\/span>’<\/span>LK-DL-K-P/SB<\/span>’<\/span>风机、水泵专用智能节电设备能进一步降低电机的噪音,根据电机的工控要求,改造后,电机运转速度明显减慢,因此有效地降了电机运行时的噪音。现场测定表明,噪音与原系统比较下降约3<\/span>